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Abstract Starting from the Born–Oppenheimer approximation and the state density
functions, which can be computed for any molecular structure, several conformational
vector space enfoldments can be described, and configuring what can be described as
well-defined molecular quantum mechanical universes. The collection of all imagin-
able molecular enfoldment universes, constitute the molecular multiverse. This study
sets the basic definitions to describe such mathematical constructs.
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1 Introduction

Since its publication in 1927, Born–Oppenheimer approximation [1] might be reck-
oned as a giant step influencing the development of quantum chemistry up to the present
times. In the present study it will be tried to use the obvious vectorial molecular pat-
tern, issuing from this old but fruitful approach, to produce a common mathematical
framework encompassing all imaginable molecular frames.

One can start with this purpose in mind, first considering the structure of vector space
enfoldment which has been recently described in some schematic way [2,3], using
the large and varied set of mathematical properties Gaussian functions possess [4,5].
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On the other hand, it can be also indicated the interest of this laboratory about density
functions (DF) and their properties has been shown along various recent publications
[6–8], as DF are elements playing a fundamental role in quantum similarity; see for
example [9–11]. Also, the subject of the present work can be related with studies per-
formed about function extended vector spaces [12], which have been put forward when
structuring a new way to plot molecular quantum mechanical functions, like DF [13].

Moreover, a recent publication was intended to critically analyze the current liter-
ature fuzzy descriptions of the concept of chemical space [14]. The present analysis
corresponds to one of the possibilities in order to clarify this issue from the quan-
tum mechanical point of view, by the way to setting up the new concept of quantum
mechanical molecular universes, leading naturally to their aggregate: the chemical
quantum mechanical multiverse.

In the present study, such possible definitions are based on the option to describe
an enfoldment structure which might be developed, associated to any molecular DF
obtained under the Born–Oppenheimer approximation [1]. The emerging picture can
be promptly associated for each molecule to a mathematical construct, which can be
considered as a molecular quantum mechanical universe by itself. Bearing in mind all
the possible molecular structures, independently of their atomic composition or size,
under such quantum mechanical approximation, then their individual DF enfoldment
universes can be gathered together and contained into a superstructure which can be
safely named the molecular multiverse.

To perform this task, first the obvious and trivial concept of conformational space
will be described. Beyond this initial step, the quantum mechanical enfoldment of
conformational spaces and their completeness will be set up. Hydrogen molecule will
be used afterwards to illustrate the previous descriptions. Alternative enfoldment com-
pleteness options will be described next. Finally, the transformation of the molecular
quantum mechanical enfoldment universes will close the present analysis.

2 Conformational spaces

In general, a molecular structure M within Born–Oppenheimer approximation [1] has
to be associated to some set of nuclear coordinates: N = {R I |I = 1, N }, which, for
any nuclear conformation, outlines a vector belonging to some well-defined and real
Euclidean 3N−dimensional space: R = (R1; R2; . . .RN ) ∈ V3N . Let me call such a
space: conformational (or conformation) space.

3 Enfoldment in conformational spaces

Constructed within the aforementioned Born–Oppenheimer approximation, the quan-
tum mechanical vth order density functions for some electronic state S, which can be
associated to the molecular structure M , and attached in turn to the previously defined
vector of nuclear coordinates, can be written formally as: ρ(v)SM (r |R ). Now, besides the
nuclear coordinate vector R one must take into account another vector r, containing
as elements the coordinates of the chosen number of electrons v, attached to the DF
of the molecular structure M . This might be written as: r = (r1; r2; . . . rv) ∈ V3v .
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One can also consider each nuclear coordinate vector R as a possible molecular
conformation point in the corresponding conformation space. Then, as a consequence,
the density functions ρ(v)SM (r |R ) can be seen as an enfoldment of the conformation
space. From the theoretical point of view, at least this is so, because nothing opposes
considering the fact to have a density function like ρ(v)SM (r |R ) , centered at each point
of the nuclear coordinate space.

4 Completeness of the conformational space enfoldment

One can call an enfoldment complete if at every point of the background vector space,
there is a function attached to it, as it is obviously the case in Gaussian enfoldments
[2,3]. However, it must be taken into account that not all the points contained within
conformation space can be enfolded with a proper DF, but some of them might be
lacking of a properly defined DF; due to the possible infinity divergences of the point-
like charge Coulomb nuclear repulsion model.

In order to have the enfoldment complete some points can be associated to a zero
function, for instance. Such a DF enfoldment complement can be readily defined by
means of: ∀r; R : �(r |R ) = 0.

When gathering information on conformation space points, some of these might be
associated to collapsed nuclear coordinates, where at least: ∃I, J : RI = RJ , like the
obvious point: R = 0. Provisionally, this kind of points can be collected into a set:
R0, say.

Therefore, considering all that has been said up to now, DF of any order can be
undoubtedly seen as space enfoldments of the nuclear coordinate space of every mole-
cular structure. Then, for completeness sake, one can define the enfoldment associated
to a given DF, connected to a pair of conditions, in the following way:

(a) ∀R /∈ R0 ∧ r ∈ V3v → ∃ρ(v)SM (r |R )
(b) ∀R0 ∈ R0 ∧ r ∈ V3v → ∃I, J : RI = RJ → ∃�(r |R0 ) = 0

The two above described conditions become sufficient to define any complete DF
enfoldment in conformation space. According to the association of a conformation
space point to the condition (a) or (b) one can name respectively such points as
proper or collapsed conformational space points.

The conformational space enfoldment will certainly present regions where the
points belong to the collapsed point set: R0. These collapsed conformation space
points will appear practically as void, due to the presence of the zero function as the
collapsed enfoldment element according to the completion condition (b), and they
will be surrounded by proper enfoldment regions of conformation space.

5 Hydrogen molecule: schematic enfoldment example

In diatomic molecules the conformation space can be considered in practice as
monodimensional, but the conformation points might be written as bidimensional
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vectors:〈D| = (−R;+R) which can be supposedly generated by a unique parameter
R in such a way that the only collapsed point is located at: R = 0.

In a highly schematic case, the hydrogen molecule wave function might be defined
with just two normalized 1s GTO functions {γa; γb}, centered at the hydrogen atoms,
located in turn at the two parameter values conformational point: 〈D| . The ground
state schematic MO, which at the same time coincides with the ground state wave
function, can be written as:

|ψ〉 = N (γa + γb)

where N is a normalization factor, and the subscripts are used to indicate the centering
of each GTO in one of the coordinates of 〈D| , and thus the corresponding first order
DF will have the following form:

ρ = |ψ〉 〈ψ | = νN 2 (|γa〉 〈γa | + |γb〉 〈γb| + 2 |γa〉 〈γb|)
= νN 2 (ρaa + ρbb + 2ρab)

where ν corresponds to the number of electrons considered filling the ground state
MO. Now, in order to define the density components, for example, one can construct
the functions:

ρab = |γa〉 〈γb| = n2 exp
(
−α

(
|r − Ra |2 + |r − Rb|2

))

with n as the minimal basis set GTO normalization factor. In this manner a similar
structure can be straightforwardly obtained for the other two monocentric terms, and
also it can be used the following convention:

Ra = (0; 0;+R) ∧ Rb = (0; 0;−R) .

In the hydrogen molecule case, centered into a unique possible collapsed point,
instead of a zero function the enfolding can be also safely associated to one GTO
centered at the origin. So, as an alternative of the enfoldment zero function at the col-
lapsed point, which has been previously defined, one can construct it with a collapsed
DF, which might be written in turn within the chosen molecular hydrogen schematic
framework as:

ρ0 (r |0 ) = νn2 exp
(
−β |r|2

)
,

where now β is an appropriate exponent and n the adequate associated GTO normal-
ization factor.

6 Alternative enfoldment of collapsed points in conformational space

Constructing the DF for collapsed points in a similar way, as it has been done in the
hydrogen case, then the enfoldment, associated to the set R0 of a given molecular
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structure, will not have to be compulsively the zero function, but can be a set of
collapsed atom DF if possible. In one way or another, though, the conformational
space enfoldment can be thus completed for molecular structures of reasonable size,
but unlikely for large molecular structures.

From the hydrogen molecule schematic example, one can easily consider that an
alternative to the collapsed points can be an appropriate DF, where the atoms, located
at the same collapsed point coordinates, are transformed into a new unique atom with
the characteristic nature, resulting from the addition of nuclear charges and electron
number respectively. Thus, the former enfoldment completeness point (b) can be
written in the following alternative way:

(b′) ∀Rc ∈ R0 ∧ r ∈ V3v → ∃I, J : RI = RJ ∈ Rc → ∃ρc (r |Rc ) ,

where now ρc (r |Rc ) corresponds to a collapsed DF centered at the collapsed confor-
mational point: Rc.

7 The enfoldment at the neighborhood of a conformational space point

Whenever the DF of any order is well defined at some proper conformation space
point, in its neighborhood there can be easily described the DF behavior [15], as a
consequence of the analytical way to express the holographic theorem on electronic
density [16].

8 The result of quantum mechanical expectation value over an enfoldment

Any DF enfoldment can be submitted to transformations, which result into some aug-
mented conformation vector space or another molecular enfoldment of conformational
space.

Considering an appropriate Hermitian operator:	(rω)∧rω ∈ V3νω , say, where:rω
is the electron coordinate vector associated to the operator, which acting over the
enfoldment DF provides an expectation value:

〈
	(rω) ρ

(v)
SM (r |R )

〉
=

∫

D1

	(rω) ρ
(v)
SM (r |R ) drω = ωSM

(
r′ |R )

,

with the remnant electronic vector, after the expectation value integration, defined as:

r′ ∈ V3ν′ ,

whenever: ν′ = ν − vω.
Then, every time v′ = 0, this leads to some vector r′, which becomes void under

the considered operator action. Therefore the enfoldment might transform into a con-
formational space just with a scalar extension or a higher dimension tensor depending
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of the nature of the operator, whose vectors can be written in the operator scalar case
as:

W = (R, ωSM ) ∈ V3N+1;

or alternatively in case that v′ 
= 0, transforming into another enfoldment, where the
enfoldment function will be associated to the expectation value function ωSM

(
r′ |R )

.
That is: the part (a) of the transformed enfoldment can be written now as:

(a) ∀R /∈ R0 ∧ r′ ∈ V3v′ → ∃ωSM
(
r′ |R )

.

9 Conclusions

Given a molecular structure quantum mechanically defined under Born–Oppenheimer
approximation, a large enfoldment set of the associated conformational space can be
defined simply using the generated state DF of the appropriate order, provided in turn
by the considered electron number.

Furthermore, Hermitian operators transform every conformational space enfold-
ment set into another enfoldment or into an extended dimension conformational space,
where the extra dimensions correspond to the scalar expectation value characteristics.

In principle, for every molecule a quantum mechanical enfoldment universe of
electronic states over the vector space of conformational arrangements can be built up
in the way explained in the present work.

The set of all possible molecular structures can be seen as constituting a quantum
mechanical multiverse made of particular enfolded molecular conformational spaces.

9.1 Final remark

The naming of any molecular quantum mechanical DF enfoldment as a molecular
universe, and the gathering of all the possible molecular enfoldment universes as a
molecular multiverse, has to be considered fairly provisional. The author will not
discuss any better semantic proposals coming from other authors about these names,
which might be given to the same or slightly amended or further refined in deep
mathematical elements as these described here.
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